Answer:
k = 0, k = 4
Explanation:
Given equation:
![y=x^2+kx+3k+4x+4](https://img.qammunity.org/2023/formulas/mathematics/college/7g2jcl700qms1yvzkhyqae77gc9p1vbw5p.png)
Rearrange into standard form
:
![\implies y=x^2+kx+4x+3k+4](https://img.qammunity.org/2023/formulas/mathematics/college/kq5f5d1lcizg918vyag8iqr5b5qd5coacd.png)
![\implies y=x^2+(k+4)x+(3k+4)](https://img.qammunity.org/2023/formulas/mathematics/college/evcqf2iyjioicw30hbnpstu28wzbi6kza6.png)
Therefore:
![a=1, \quad b=(k+4), \quad c=(3k+4)](https://img.qammunity.org/2023/formulas/mathematics/college/kj0ln07hxx5zumh7y93u2nczq5pn1hrbis.png)
If the vertex lies in the x-axis, then the quadratic has one (repeating) root at (x, 0). Therefore, we can use the discriminant to find the values of k.
Discriminant
![b^2-4ac\quad\textsf{when}\:ax^2+bx+c=0](https://img.qammunity.org/2023/formulas/mathematics/high-school/ku2btl8idftsr3jj7mteoe7eleri3tfk7z.png)
![\textsf{when }\:b^2-4ac > 0 \implies \textsf{two real roots}](https://img.qammunity.org/2023/formulas/mathematics/high-school/bemgetmu8gq7ewgi8mz1aci7d7xdwkp70s.png)
![\textsf{when }\:b^2-4ac=0 \implies \textsf{one real root}](https://img.qammunity.org/2023/formulas/mathematics/high-school/h9jji031zzkf1l9um9zrdqkup06w57wi7f.png)
![\textsf{when }\:b^2-4ac < 0 \implies \textsf{no real roots}](https://img.qammunity.org/2023/formulas/mathematics/high-school/hps2jsx0en49x6jj16wq5ss16ajds9bzdp.png)
Therefore, set the discriminant to zero and solve for k:
![\implies (k+4)^2-4(1)(3k+4)=0](https://img.qammunity.org/2023/formulas/mathematics/college/582zqybynx45xfatr7a4moailbogtkhida.png)
![\implies k^2+8k+16-12k-16=0](https://img.qammunity.org/2023/formulas/mathematics/college/3a82v5erquwcaqcv6ucl8v02yrckp4ycwq.png)
![\implies k^2-4k=0](https://img.qammunity.org/2023/formulas/mathematics/college/1vai7yugzc6d72wqdy5exxez9qyqrpcklb.png)
![\implies k(k-4)=0](https://img.qammunity.org/2023/formulas/mathematics/college/dzwten2ipu3dg9verq6guwspr2zyx6bddf.png)
![\implies k=0, k=4](https://img.qammunity.org/2023/formulas/mathematics/college/7igsdhnn1xd7zp0e7y6zxojz23s4n2uniy.png)
So the vertex lies in the x-axis when k = 0 or k = 4