53.8k views
10 votes
Please solve with explanation

Please solve with explanation-example-1

1 Answer

2 votes

Answer:


\textsf{a)}\quad y=8x^2+2x-3


\textsf{b)}\quad y=x^2-2x-4

Explanation:

Given information:


x^2+bx+c=0


x_1+x_2=-b


x_1x_2=c

Part (a)


\textsf{If}\quad x_1=\frac12\quad\textsf{and}\quad x_2=-\frac34


\begin{aligned}\implies -b & =\frac12+\left(-\frac34\right)\\ & = \frac24-\frac34\\ & =-\frac14\end{aligned}


\begin{aligned}\implies c & =\frac12 \cdot \left(-\frac34\right)\\ & = (1 (-3))/(2 \cdot 4)\\ & =-\frac38\end{aligned}

Substituting the found values of b and c into
x^2+bx+c=0


\implies x^2+\frac14x-\frac38=0

Multiply both sides by 8 so that coefficients are integers:


\implies 8x^2+2x-3=0

Therefore, the final quadratic equation is:


y=8x^2+2x-3

----------------------------------------------------------------------------------------------

Part (b)


\textsf{If}\quad x_1=1+√(5)\quad\textsf{and}\quad x_2=1-√(5)


\begin{aligned}\implies -b & =(1+√(5))+(1-√(5))\\ & = 1+1+√(5)-√(5)\\ & =2\end{aligned}


\begin{aligned}\implies c & =(1+√(5))(1-√(5))\\ & = 1-√(5)+√(5)-5\\ & =-4\end{aligned}

Substituting the found values of b and c into
x^2+bx+c=0


\implies x^2-2x-4=0

Therefore, the final quadratic equation is:


y=x^2-2x-4

User MST
by
9.0k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories