Consider the statement. For all sets A, B, and C, A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C). Fill in the blanks in the following proof for the statement. (In the proof, let ∩ and ∪ stand for the words "intersection" and "union," respectively.) Proof: Suppose A, B, and C are any sets. [To show that A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C), we must show that A ∩ (B ∪ C) ⊆ (A ∩ B) ∪ (A ∩ C) and that (A ∩ B) ∪ (A ∩ C) ⊆ A ∩ (B ∪ C).]
Proof that A ∩ (B ∪ C) ⊆ (A ∩ B) ∪ (A ∩ C): Let x ∈ A ∩ (B ∪ C).