175k views
0 votes
cos alpha equals 7 over 25 and sin beta equals 4 over 5. Both angles are in Quadrant I. Find cos left parenthesis alpha minus beta right parenthesis

1 Answer

2 votes

Answer:


(117)/(125)

Explanation:

We are given that:


cos\alpha = (7)/(25)


sin \beta = (4)/(5)

To find
cos(\alpha - \beta).

As per Formula:


cos(A-B) =cos A cosB+ sinA sinB

Here, A is
\alpha and B is
\beta.

So, formula becomes


cos(\alpha -\beta)=cos\apha cos\beta+sin\alpha sin \beta ..... (1)

Using the following identity to calculate
sin\alpha \text{ and } cos \beta:


sin^2 \theta + cos^2 \theta = 1


sin^(2)\alpha+\frac {7^(2) }{25^(2) } = 1\\ \Rightarrow sin\alpha = \sqrt{1-(49)/(625)}\\\Rightarrow sin\alpha = (24)/(25)

Similarly,


\frac {4^(2) }{5^(2) } + cos^(2)\beta = 1\\ \Rightarrow cos\beta = \sqrt{1-(16)/(25)}\\\Rightarrow cos\beta = (3)/(5)

Putting values in equation (1):


cos(\alpha -\beta ) = (7)/(25) * (3)/(5) + (24)/(25) * (4)/(5)\\\Rightarrow (21+96)/(125)\\\Rightarrow (117)/(125)

User Ivory
by
6.3k points