Answer:
x = -1, 4 + i, 4 - i
Explanation:
Possible rational roots are:
+/- 1, +/- 17
Using trial method:
f(-1) = (-1)⁴ - 6(-1)³ + 2(-1)² + 26(-1) + 17
f(-1) = 0
f(1) = (1)⁴ - 6(1)³ + 2(1)² + 26(1) + 17
f(1) = 40
f(-17) = (-17)⁴ - 6(-17)³ + 2(-17)² + 26(-17) + 17
f(-17) = 113152
f(17) = (17)⁴ - 6(17)³ + 2(17)² + 26(17) + 17
f(17) = 55080
This implies that x = -1 is a root, with multiplicity of 2 or 4
Let the other quadratic factor be g(x)
g(x) = [x⁴ - 6x³ + 2x² + 26x + 17] ÷ (x + 1)²
g(x) = [x⁴ - 6x³ + 2x² + 26x + 17] ÷ (x² + 2x + 1)
g(x) = [x²(x² + 2x + 1) - 8x(x² + 2x + 1) + 17(x² + 2x + 1)] ÷ (x² + 2x + 1)
g(x) = x² - 8x + 17
g(x) = 0
x = [-(-8) +/- sqrt[(-8)² - 4(1)(17)]/2
x = [8 +/- 2i]/2
x = 4 +/- i