102k views
4 votes
Show with work please.

Show with work please.-example-1
User Galz
by
7.9k points

1 Answer

0 votes

Answer:


$\csc \left(\theta-(\pi )/(2)\right)=0.73$

Explanation:

The identity you will use is:


$\csc \left(x\right)=(1)/(\sin \left(x\right))$

So,


$\csc \left(\theta-(\pi )/(2)\right)$


$\csc \left(\theta-(\pi )/(2)\right)=(1)/(\sin \left(-(\pi )/(2)+\theta\right))$

Now, using the difference of sin

Note: state that
\text{sin}(\alpha\pm \beta)=\text{sin}(\alpha) \text{cos}(\beta) \pm \text{cos}(\alpha) \text{sin}(\beta)


$\csc \left(\theta-(\pi )/(2)\right)=(1)/(-\cos \left(\theta\right)\sin \left((\pi )/(2)\right)+\cos \left((\pi )/(2)\right)\sin \left(\theta\right))$

Solving the difference of sin:


$-\cos \left(\theta\right)\sin \left((\pi )/(2)\right)+\cos \left((\pi )/(2)\right)\sin \left(\theta\right)$


-\cos \left(\theta\right) \cdot 1+0\cdot \sin \left(\theta\right)


-\text{cos} \left(\theta\right)

Then,


$\csc \left(\theta-(\pi )/(2)\right)=-(1)/(\cos \left(\theta\right))$

Once


\text{sec}(-\theta)=\text{sec}(\theta)

And,
\text{sec}(\theta)=-0.73


$-(1)/(\cos \left(\theta\right))=-\text{sec}(\theta)$


$-(1)/(\cos \left(\theta\right))=-(-0.73)$


$-(1)/(\cos \left(\theta\right))=0.73$

Therefore,


$\csc \left(\theta-(\pi )/(2)\right)=0.73$

User Adzm
by
8.0k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories