102k views
4 votes
Show with work please.

Show with work please.-example-1
User Galz
by
4.0k points

1 Answer

0 votes

Answer:


$\csc \left(\theta-(\pi )/(2)\right)=0.73$

Explanation:

The identity you will use is:


$\csc \left(x\right)=(1)/(\sin \left(x\right))$

So,


$\csc \left(\theta-(\pi )/(2)\right)$


$\csc \left(\theta-(\pi )/(2)\right)=(1)/(\sin \left(-(\pi )/(2)+\theta\right))$

Now, using the difference of sin

Note: state that
\text{sin}(\alpha\pm \beta)=\text{sin}(\alpha) \text{cos}(\beta) \pm \text{cos}(\alpha) \text{sin}(\beta)


$\csc \left(\theta-(\pi )/(2)\right)=(1)/(-\cos \left(\theta\right)\sin \left((\pi )/(2)\right)+\cos \left((\pi )/(2)\right)\sin \left(\theta\right))$

Solving the difference of sin:


$-\cos \left(\theta\right)\sin \left((\pi )/(2)\right)+\cos \left((\pi )/(2)\right)\sin \left(\theta\right)$


-\cos \left(\theta\right) \cdot 1+0\cdot \sin \left(\theta\right)


-\text{cos} \left(\theta\right)

Then,


$\csc \left(\theta-(\pi )/(2)\right)=-(1)/(\cos \left(\theta\right))$

Once


\text{sec}(-\theta)=\text{sec}(\theta)

And,
\text{sec}(\theta)=-0.73


$-(1)/(\cos \left(\theta\right))=-\text{sec}(\theta)$


$-(1)/(\cos \left(\theta\right))=-(-0.73)$


$-(1)/(\cos \left(\theta\right))=0.73$

Therefore,


$\csc \left(\theta-(\pi )/(2)\right)=0.73$

User Adzm
by
4.4k points