Answer:
the optimal order size Q is 18.56 cars
the annual inventory cost = $12066.48
the order cycle time is 42.34 days
Step-by-step explanation:
Using the following expression to determine the optimal order size Q:
![Q = \sqrt{(2* ordering \ cost \ * Demand)/(Annual \ carrying \ cost )}](https://img.qammunity.org/2021/formulas/business/college/fn87wnnxbkkht6dm266tcpzvfcovj3zsrm.png)
![Q = \sqrt{(2* 700 * 160)/(650 )}](https://img.qammunity.org/2021/formulas/business/college/28c299r0rok4yk44u68ugnx1ya1ztuxw69.png)
![Q =√(344.6153846)](https://img.qammunity.org/2021/formulas/business/college/dna4nzagilgy27lr1pcwghr5p07ivbxtqk.png)
![Q = 18.56](https://img.qammunity.org/2021/formulas/business/college/7re0me3azg8d9zacrkn2jflamvtg2j9abd.png)
Hence; the optimal order size Q is 18.56 cars
The annual inventory cost is mathematically expressed as:
![(ordering \ cost * Demand)/(optimal \ order \ size) + (annual \ carrying \ cost)/(2)](https://img.qammunity.org/2021/formulas/business/college/aqugbp119bp6o7scw6lp9060bjc1tpxqc8.png)
=
![(700*160)/(18.56) +(650*18.56)/(2)](https://img.qammunity.org/2021/formulas/business/college/t0u0iw409mt1gqght2u0700dvvf4ahkm5t.png)
= 6034.482759 + 6032
= $12066.48276
≅ $12066.48
Hence, the annual inventory cost = $12066.48
For The order cycle time; we have;
Order cycle time =
![(365 \ days )/(1) / ( ( Demand )/(optimal \ order \ time ))](https://img.qammunity.org/2021/formulas/business/college/taxj458tj5qyervz3dmswgvq54lym1xp2y.png)
=
![(365 )/(1) / ((160 )/(18.56))](https://img.qammunity.org/2021/formulas/business/college/5qvg03n3i1mu3n0etxrut02rzb4m82udgh.png)
=
![(365 )/(1) / (8.62)](https://img.qammunity.org/2021/formulas/business/college/ff7t4vppvuhla8l5pdc5ellheslf5ho2zv.png)
=
![(365 )/(1) * (1)/( 8.62)](https://img.qammunity.org/2021/formulas/business/college/xivy5iouvzlf8zyec1idg4r1h1e91180uj.png)
= 42.34 days
Hence, the order cycle time is 42.34 days