85.3k views
14 votes
If csc ( x ) = 4, for 90 ∘ < x < 180, then sin ( x /2 ) = ? cos ( x /2 ) = ? tan ( x/ 2 ) = ?

User Dergroncki
by
7.6k points

1 Answer

12 votes

Answer:

see below

Explanation:

cscx=4

sinx=1/4

cosx=-√(1-sin^2x)=-√(1-(1/16))=-√(15/16)=-√15/4

note: cos<0,sin>0 in quadrant II

sin(x/2)=
\sqrt{(1+cos(x))/(2) } =\sqrt\frac{1+\sqrt{(15)/(4) } }{2} =\sqrt{(4+√(15) )/(8) }

cos(x/2)=
\sqrt{(1-cos(x))/(2) } =\sqrt{\frac{1-\sqrt{(15)/(4) } }{2} } =\sqrt{(4-√(15) )/(8) }

tan(x/2)=
(sin(x))/(1-cos(x)) =((1)/(4) )/((1-(√(15) )/(4) )) =((1)/(4) )/((4-√(15) )/(4) ) =(1)/(4-√(15) )

Calculator check:


sinx=(1)/(4)


x\\eq 165.52˚ in quadrant II


(x)/(2) \\eq 82.76 ˚

sin(x/2)≈sin(82.76)≈0.9920..

exact value=√(4+√15)/8≈0.9920..

..

cos(x/2)≈cos(82.76)≈0.1260..

exact value=√(4-√15)/8≈0.1260..

..

tan(x/2)=tan(82.76)≈7.872..

exact value=1/(4-√15)≈7.872..

User Abdelgrib
by
7.9k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories