Answer:
Step-by-step explanation:
The trick is to find the time.
If the ball did not travel horizontally at all and was just dropped, how long would it take to hit the ground?
Givens
vi = 0
d = 1.2 m
a = 9.8 m/s^2
Formula
d = vi * t + 1/2 * a ^ t^2
Solution
1.2 = 0*t + 1/2 9.8 * t^2
1.2 = 4.9 t^2
t^2 = 1.2 / 4.9
t^2 = 0.245
sqrt(t^2) = sqrt(.245)
t = 0.4949 seconds
Answer
You are not very clear about which answer you want. There are two of them. One is going horizontally and the other is vertically.
Vertical
vf^2 = vi^2 + 2*a*d
vi = 0
a = 9.8
t = 0.4949
vf^2 =0^2 + 2 * 9.8 * 1.2
vf^2 = 23.52
sqrt(vf^2) = sqrt(23.52)
vf = 4.85 m/s
Horizontal
This is likely what you are looking for.
There is 0 acceleration horizontally.
d = 13.5 m
t = 0.4949
s = ?
s = d/t
s = 13.5/0.4949
s = 27.28
Note
You should note a couple of things.
- The horizontal and vertical speeds are not the same.
- The time is used for both the horizontal and vertical speeds.
- The horizontal and vertical distances are quite different.
- Horizontal accelerations for these type of questions is generally 0.