186k views
3 votes
Calculate the poH if 2.95 g of KOH(s) dissolved to make 100mL of solution

1 Answer

2 votes

Answer:


\rm pOH \approx 1.279 if
2.95\; \rm g of
\rm KOH is dissolved completely in water to make a
100\; \rm mL solution.

Step-by-step explanation:

Look up the relative atomic mass data on a modern periodic table:


  • \rm K:
    39.098.

  • \rm O:
    15.999.

  • \rm H:
    1.008.

Calculate the formula mass of
\rm KOH:


\begin{aligned}&M(\mathrm{KOH})\\ &= 39.098 + 15.999 + 1.008 \\ &= 56.105\; \rm g \cdot mol^(-1)\end{aligned}.

Find the number of moles of formula units in that
2.95\; \rm g of
\rm KOH:


\begin{aligned}& n(\mathrm{KOH}) \\ & = \frac{m(\mathrm{KOH})}{M(\mathrm{KOH})} = (2.95\; \rm g)/(56.105\; \rm g \cdot mol^(-1)) \approx 0.0525800\; \rm mol \end{aligned}.


\rm KOH is a strong base. When dissolved in water, it ionizes completely to produce
\rm K^(+) ions and hydroxide ions (
\rm OH^(-).)

Note that there are one moles of
\rm OH^(-) ions in each mole of
\rm KOH formula units. When that
2.95\; \rm g of
\rm KOH (approximately
0.0525800\; \rm mol of
\rm KOH formula units) dissolves completely in water to make a
100\; \rm mL solution, about
0.0525800\; \rm mol of
\rm OH^(-) ions will be produced.

Convert the unit of volume to liters:
V = 100\; \rm mL = 0.1\; \rm L.

Calculate the concentration of
\rm OH^(-) ions in that solution:


\begin{aligned}&[\mathrm{OH^(-)}] \\ &= (n)/(V) \approx (0.0525800\; \rm mol)/(0.1 \; \rm L) \approx 0.525800\; \rm mol \cdot L^(-1) \end{aligned}.

Calculate the
\rm pOH of that solution:


\begin{aligned}& \mathrm{pOH} \\ &= -\log_(10)[\mathrm{OH^(-)}] \\ &\approx -\log_(10)(0.525800) \approx 1.279\end{aligned}.

User Kit Menke
by
5.6k points