Answer:
A. You can not use the Pythagorean theorem because you would need the length of at least two sides but the triangle only provides the length of one.
B. x ≈ 7 ft. y ≈ 6 ft.
Explanation:
Sin(51) =
![(x)/(9)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/b7b35yk07buw636wuvd9l751e4zgyu7p5x.png)
Sin(51)*9 = x
x = 6.99431
x ≈ 7 ft.
Now you can use the Pythagorean theorem.
![a^(2) +b^(2) =c^(2)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/xn5252v74o5ksp7zi896eac8d0vg4u4lkk.png)
![7^(2) +b^(2) =9^(2)](https://img.qammunity.org/2021/formulas/mathematics/high-school/ay96ca8ofch7bea5mkw833zp2b4fwblae8.png)
![49+b^(2) =81](https://img.qammunity.org/2021/formulas/mathematics/high-school/w24jscw0vjxy6wa1grgsndiz2zdsqli3rc.png)
= 32
![\sqrt{b^(2) } =√(32)](https://img.qammunity.org/2021/formulas/mathematics/high-school/lawbzbmyj8w6fczvgpg5ejdtezvngmoe95.png)
b = 5.65685
y ≈ 6 ft.
Or, continue to use the cosine.
Cos(51) =
![(y)/(9)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/kwxbcd8n2iztdo1h43lixenyru3vvuavzn.png)
Cos(51)*9 = y
y = 5.66388
y ≈ 6 ft.
Answer Check
We know c = 9 ft.
![a^(2)+ b^(2)= c^(2) \\7^(2)+ 6^(2)= c^(2)\\49+36=c^(2)\\ 85 = c^(2) \\√(85) =\sqrt{c^(2) } \\c=9.21954\\c=9 ft.](https://img.qammunity.org/2021/formulas/mathematics/high-school/5ed1fykkuj2tf4eq74p37jqik9yft5nzwj.png)