Answer:
The surface area of her bamboo rain stick is 1,837 cm^2
Explanation:
The bamboo rain stick can be modeled as a cylinder.
To calculate the surface of a cylinder, we add the lateral surface and 2 times the circular base.
![A=A_l+2A_b](https://img.qammunity.org/2021/formulas/mathematics/college/7zt2xfpfqz1dihwbgqe1mc1b8omicq1eqb.png)
The lateral surface is equal to the length of the bamboo rain stick multiplied by the circunference of the base.
Then we have:
![A_l=l\cdot C=80\;cm\;\cdot 22\;cm=1,760\;cm^2](https://img.qammunity.org/2021/formulas/mathematics/college/ziw1j5my975wzsxtql5chh8acwwt2pcrv4.png)
The base is calculated as π times the square of the radius. We don't know the radius, but we can calculate it from the circumference as:
![C=2\pi r=22\;cm\\\\r=(22\;cm)/(2\pi)\approx(22\;cm)/(6.28)=3.5\;cm](https://img.qammunity.org/2021/formulas/mathematics/college/2wo5nfvzk9pyssbmonz333hqprc9fbvv7p.png)
Then, we can calculate the base area as:
![A_b=\pi r^2\approx3.14(3.5\;cm)^2=3.14*12.27\;cm^2=38.5\;cm^2](https://img.qammunity.org/2021/formulas/mathematics/college/ssvj4ioefdnawr1xgeqja3dc8d7ukmkpkw.png)
The surface area of the bamboo rain stick is:
![A=A_l+2A_b=1,760\;cm^2+2*38.5\;cm^2\\\\A=1,760\;cm^2+77\;cm^2\\\\A=1837\;cm^2](https://img.qammunity.org/2021/formulas/mathematics/college/lspnajwptweefhm0gnl6gfbfkzot1odofy.png)