, so you immediately get
![\frac1{\cot\theta}=\boxed{\tan\theta=\frac17}](https://img.qammunity.org/2021/formulas/mathematics/high-school/he3avljx7nisjvanrhso7erzm7t671b3xz.png)
Recall the Pythagorean identity:
![\tan^2\theta+1=\sec^2\theta\implies\sec\theta=\pm√(1-\left(\frac17\right)^2)=\pm\frac{4\sqrt3}7](https://img.qammunity.org/2021/formulas/mathematics/high-school/ka4lodr6j1gv4clmc2igsjhijfaggung70.png)
and from this we also get cosine for free, since
![\frac1{\sec\theta}=\cos\theta=\pm\frac7{4\sqrt3}](https://img.qammunity.org/2021/formulas/mathematics/high-school/a2u8rurqsq9iot3enk6yvw33qx2ibqzmrg.png)
But only one of these can be correct. By definition of tangent,
![\tan\theta=(\sin\theta)/(\cos\theta)](https://img.qammunity.org/2021/formulas/mathematics/high-school/6xzhbcyibwtzvk1mqjhu6mtl6be0e2jmr4.png)
For
between π and 2π, we expect
to be negative. We konw
is positive, which means
must also be negative. So we have
![\boxed{\cos\theta=\frac7{4\sqrt3}}](https://img.qammunity.org/2021/formulas/mathematics/high-school/lw6b74uha1omnzuk2szdu8acl5v159s4me.png)
![\boxed{\sec\theta=\frac{4\sqrt3}7}](https://img.qammunity.org/2021/formulas/mathematics/high-school/wv60c5eo72hpvg6w6ewistozfy6artuftj.png)
and we can find sine using the tangent:
![\tan\theta=(\sin\theta)/(\cos\theta)\implies\frac{\frac7{4\sqrt3}}7=\boxed{\sin\theta=\frac1{4\sqrt3}}](https://img.qammunity.org/2021/formulas/mathematics/high-school/gbanf2bsd6kwp02fbdascijzpujo44rjgy.png)
and for free we get
![\frac1{\sin\theta}=\boxed{\csc\theta=4\sqrt3}](https://img.qammunity.org/2021/formulas/mathematics/high-school/vx15j7en8326pct5x6gpktxl6mngcxppte.png)