Answer:
Explanation:
The formula for determining the sum of squares is expressed as
Σ(x - mean)²
n = 16
Mean = (19 + 28 + 47 + 22 + 38 + 28 + 40 + 37 + 51 + 39 + 53 + 42 + 32 + 13 + 20 + 31)/16 = 33.75
Σ(x - mean)² = (19 - 33.75)^2 + (28 - 33.75)^2 + (47 - 33.75)^2 + (22 - 33.75)^2 + (38 - 33.75)^2 + (28 - 33.75)^2 + (40 - 33.75)^2 + (37 - 33.75)^2 + (51 - 33.75)^2 + (39 - 33.75)^2 + (53 - 33.75)^2 + (42 - 33.75)^2 + (32 - 33.75)^2 + (13 - 33.75)^2 + (20 - 33.75)^2 + (31 - 33.75)^2
SS = 2059
Variance = Σ(x - mean)²/n
Variance = 2059/16 = 128.69
Standard deviation = √variance
Standard deviation = √128.6875
Standard deviation = 11.34