216k views
11 votes
What is the length of AC?

What is the length of AC?-example-1

1 Answer

9 votes

Answer:

Length of AC = 12units.

Explanation:


\sf\large{\star Given:-}

  • Hypotenuse of the triangle =
    \sf\pink{10\:units.}
  • Height of the triangle =
    \sf\pink{8 \: units.}


\sf\large{\star To\: Find:-}


\rightarrow Base of the triangle.


\sf\large{\star Solution:-}


\rightarrowAs we know that,

Pythagoras Theorem:


\sf\blue{Hypotenuse^2\:=\: Height^2+Base^2}

So, In triangle ABD by putting the value of hypotenuse and height in this formula we get,


\rightarrow
\sf{10^2\:=\: 8^2 + Base^2}


\rightarrow
\sf{100\:=\: 64 + Base^2}


\rightarrow
\sf{100-64\:=\: Base^2}


\rightarrow
\sf{36\:=\: Base^2}


\rightarrow
\sf{√(36)\:=\: Base}


\rightarrow
\sf{6\:=\: Base}

Since, it is given that BD is the perpendicular bisector of AC so length of AC will be doubled.

Therefore, length of AC of the given triangle =
\sf\purple{12units.}

User Xyzt
by
5.1k points