23.8k views
0 votes
ANSWER AND SHOW WORK FOR 40 POINTS

FORTY LIL wigga
Factor each perfect square trinomial. Then, solve the equation by taking the square root of each side.

Q1) x^2+14x+49=9



Q2) x^2-16x+64=144



3Q) x^2-2x+1=81

2 Answers

5 votes

Answer: Q1) (x+7)² = 9

x = -10, -4

Q2) (x-8)² = 144

x = -4, 20

Q3) (x-1)² = 81

x = -8, 10

Explanation:

Q1) x² + 14x + 49 = 9

x² + 2(x)(7) + 7² = 9

(x + 7)² = 9

x + 7 = +/- sqrt(9)

x + 7 = 3

x = -4

x + 7 = -3

x = -10

Q2) x² - 16x + 64 = 144

x² - 2(x)(8) + 8² = 144

(x - 8)² = 144

x - 8 = +/- sqrt(144)

x - 8 = 12

x = 20

x - 8 = -12

x = -4

Q3) x² - 2x + 1 = 81

x² - 2(x)(1) + 1² = 81

(x - 1)² = 81

x - 1 =+/- sqrt(81)

x - 1 = 9

x = 10

x - 1 = -9

x = -8

Explanation:

User Jon Rosen
by
4.2k points
6 votes

Answer:

Q1) (x+7)² = 9

x = -10, -4

Q2) (x-8)² = 144

x = -4, 20

Q3) (x-1)² = 81

x = -8, 10

Explanation:

Q1) x² + 14x + 49 = 9

x² + 2(x)(7) + 7² = 9

(x + 7)² = 9

x + 7 = +/- sqrt(9)

x + 7 = 3

x = -4

x + 7 = -3

x = -10

Q2) x² - 16x + 64 = 144

x² - 2(x)(8) + 8² = 144

(x - 8)² = 144

x - 8 = +/- sqrt(144)

x - 8 = 12

x = 20

x - 8 = -12

x = -4

Q3) x² - 2x + 1 = 81

x² - 2(x)(1) + 1² = 81

(x - 1)² = 81

x - 1 =+/- sqrt(81)

x - 1 = 9

x = 10

x - 1 = -9

x = -8

User SerialEnabler
by
3.7k points