Answer:
Check attachment for better understanding
Explanation:
∫3 sec θ dθ
Multiply the denominator and numerator by sec θ + tan θ
∫3 secθ × (secθ + tanθ) / (secθ + tanθ) dθ
3∫(sec²θ + secθtanθ) / (secθ + tanθ) dθ
Let U = secθ + tanθ
dU / dθ = secθtanθ + sec²θ
dθ = dU / secθtanθ + sec²θ
Then,
3∫(sec²θ + secθtanθ) / (secθ + tanθ) dθ
3∫(sec²θ + secθtanθ) / (secθ + tanθ) × dU / secθtanθ + sec²θ
3∫1 / U × dU
3∫dU / U
3 In|U| + C
3• In|secθ + tanθ| + C