Answer:
the final pressure in pascal =
![6.30*10^5 \ \ Pa](https://img.qammunity.org/2021/formulas/physics/college/t8zclixwftdge3obpt1w4wovwfe87y9pwl.png)
Step-by-step explanation:
Given that:
initial pressure =
![6.9*10^5 \ Pa](https://img.qammunity.org/2021/formulas/physics/college/gfj26d7huh9q90zek87iijwfrrhl0mhd2o.png)
Initial Temperature = 17.5 °C = (17.5 + 273) K = 290.5 K
Volume = 2.00 L = 2.00 × 10⁻³ m³
Initial volume of the air occupied by gas V' = 95 cm³ = 95× 10⁻⁶ m
Using the ideal gas temperature;
PV = nKT
where
K = Boltzmann constant = 1.38 × 10⁻²³
From above expression;
![n = (PV)/(KT)](https://img.qammunity.org/2021/formulas/physics/college/nbxbnkwgp3qeuvoqzr7v6sj3syiovf37we.png)
![n = (6.9*10^5*2.00*10^(-3))/(1.38*10^(-23)*290.5)](https://img.qammunity.org/2021/formulas/physics/college/g3gqztucmfpo98y4ut6ifzdh2x48fspo0n.png)
![n = 3.44*10^(23)](https://img.qammunity.org/2021/formulas/physics/college/hrjdkp88nop8y8xynj8rddvivlncvp8oub.png)
The number of moles that were removed from the tire is calculated as
![\Delta \ n = (P_(atm)*V')/(KT)](https://img.qammunity.org/2021/formulas/physics/college/6crxmqhb39a58hlwq3wnrsk1qhqcggs9ha.png)
where
= atmospheric pressure =
![1.013*10^5](https://img.qammunity.org/2021/formulas/physics/college/immuksjiyselutvz17zdrsw9aji48hk1eo.png)
![\Delta \ n = (1.013*10^5*95*10^(-6))/(1.38*10^(-23)*290.5)](https://img.qammunity.org/2021/formulas/physics/college/27lqc0n762jhav4n2rpr3jumvnawqnvto1.png)
![\Delta \ n = 2.4*10^(21)](https://img.qammunity.org/2021/formulas/physics/college/fkbdv72x670pnfp4kznkpyyogk6w7qtdz9.png)
The remaining number of moles after the release of gas is
![n_2 = n- \Delta n](https://img.qammunity.org/2021/formulas/physics/college/16102czipbnhxebk7hq322o4g9f0gspkj5.png)
![n_2 = 3.44*10^(23) -2.4*10^(21)](https://img.qammunity.org/2021/formulas/physics/college/ug9ebge9t1c9glor22ml5c7vkddbpab7ef.png)
![n_2 = 3.416*10^(23)](https://img.qammunity.org/2021/formulas/physics/college/17kf8tq0al5ym65ne6zpvqa71gm1be4jxs.png)
Using the expression
to determine the final pressure:
![P_2 = (3.416*10^(23)*1.38*10^(-23)*290.5 )/(2.00*10^(-3))](https://img.qammunity.org/2021/formulas/physics/college/x9bxlrbszc51dy1zzzp2mhnd234pc631aj.png)
![P_2 = 6.30*10^5 \ \ Pa](https://img.qammunity.org/2021/formulas/physics/college/ak59yklxnjyyzi8521z3ypw3sny8kmdknk.png)
Hence, the final pressure in pascal =
![6.30*10^5 \ \ Pa](https://img.qammunity.org/2021/formulas/physics/college/t8zclixwftdge3obpt1w4wovwfe87y9pwl.png)