Answer:
![\displaystyle (dy)/(dx) = 3x^2](https://img.qammunity.org/2021/formulas/mathematics/middle-school/a7mib9k8h0pfnixz1l3a984gvq6a2crg3j.png)
General Formulas and Concepts:
Calculus
Differentiation
- Derivatives
- Derivative Notation
Derivative Property [Addition/Subtraction]:
![\displaystyle (d)/(dx)[f(x) + g(x)] = (d)/(dx)[f(x)] + (d)/(dx)[g(x)]](https://img.qammunity.org/2021/formulas/mathematics/college/kqosumt4896r7x44jgtw0o7kk6g4d3irvr.png)
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Explanation:
Step 1: Define
Identify
![\displaystyle y = x^3 - 2](https://img.qammunity.org/2021/formulas/mathematics/middle-school/cadva2b1gs5yzbx85zku4e71so0bhbm10u.png)
Step 2: Differentiate
- Derivative Property [Addition/Subtraction]:
![\displaystyle y' = (d)/(dx)[x^3] - (d)/(dx)[2]](https://img.qammunity.org/2021/formulas/mathematics/middle-school/c6cdm076nzyagftn37gxjd0lfsdo6jn6ck.png)
- Basic Power Rule:
![\displaystyle y' = 3x^2](https://img.qammunity.org/2021/formulas/mathematics/middle-school/u1em4dszwaeyk4nj6cxfdvrpvbc1n66fag.png)
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Differentiation