Answer:
12 ∫ (cot⁴(3x) csc²(3x)) dx
If u = cot(3x), then du = -3 csc²(3x) dx. So -⅓ du = csc²(3x) dx.
12 ∫ u⁴ (-⅓ du)
-4 ∫ u⁴ du
-⅘ u⁵ + C
Substituting back:
-⅘ cot⁵(3x) + C
Evaluate between x=0 and x=π/12. cot(0) is undefined, so the integral does not exist.
Explanation: