40.5k views
5 votes
100 POINTS.

PLEASE PROVIDE STEPS

100 POINTS. PLEASE PROVIDE STEPS-example-1

2 Answers

4 votes

Answer:

12 ∫ (cot⁴(3x) csc²(3x)) dx

If u = cot(3x), then du = -3 csc²(3x) dx. So -⅓ du = csc²(3x) dx.

12 ∫ u⁴ (-⅓ du)

-4 ∫ u⁴ du

-⅘ u⁵ + C

Substituting back:

-⅘ cot⁵(3x) + C

Evaluate between x=0 and x=π/12. cot(0) is undefined, so the integral does not exist.

Explanation:

User Robber Pen
by
7.8k points
4 votes

Explanation:

12 ∫ (cot⁴(3x) csc²(3x)) dx

If u = cot(3x), then du = -3 csc²(3x) dx. So -⅓ du = csc²(3x) dx.

12 ∫ u⁴ (-⅓ du)

-4 ∫ u⁴ du

-⅘ u⁵ + C

Substituting back:

-⅘ cot⁵(3x) + C

Evaluate between x=0 and x=π/12. cot(0) is undefined, so the integral does not exist.

User Nickgroenke
by
8.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.