Answer:
A. The initial velocity of the bullet is
![= 300.6m/s](https://img.qammunity.org/2021/formulas/physics/college/g79ynez3ue0odaq81tukqdjnwao9ff1wbj.png)
B. Mechanical energy of the system before and after collision: 451.80 J, 0.9018 J
C. Percentage of K.E lost to heat is = 99.8 %
Step-by-step explanation:
From conservation of linear momentum,
![(m_(1)v_(1) +m_(2)v_(2))= (m_(1)+m_(2))v](https://img.qammunity.org/2021/formulas/physics/college/tuss041xh0x4fqsxtl8dfrc68kz189vuv4.png)
let the mass of the block be m1 and velocity = v1
let the mass of the bullet be m2 and velocity = v2
Let the final velocity of the system be v.
A. Plugging our parameters into the equation, we have:
![[(5 * 0) +(0.01* v_(2))]= 5.01 * 0.6](https://img.qammunity.org/2021/formulas/physics/college/lw4uo5oozjohbfcezasyp5u9um1p8yc21h.png)
![v_(2)=(3.006)/(0.01)= 300.6m/s](https://img.qammunity.org/2021/formulas/physics/college/8j5o9c8pumdsl83ey9taw6lm3xdf3akv3e.png)
Hence, the initial velocity of the bullet is
![= 300.6m/s](https://img.qammunity.org/2021/formulas/physics/college/g79ynez3ue0odaq81tukqdjnwao9ff1wbj.png)
B. The mechanical energies of the system exist in form of kinetic energy.
I. Kinetic energy of the system before collision:
![0.5 * 5* 0^(2) + 0.5 * 0.01 * 300.6^(2)= 451.80 J](https://img.qammunity.org/2021/formulas/physics/college/nzbmur8s7cjyvdbx8s0c153psh3q3nkmyx.png)
II. Kinetic energy after collision:
![0.5* 5.01 * 0.6^(2)= 0.9018 J](https://img.qammunity.org/2021/formulas/physics/college/oos4d5ztek6miwqkdulbgil8oeuuu3iz0z.png)
C. Change in Mechanical Energy =
![451.8 - 0.9018 J= 450.9J](https://img.qammunity.org/2021/formulas/physics/college/vhvuhlio0qw38tsatpep0ru8js1cbquqw2.png)
![(450.9)/(451.8) * 100 =99.8%](https://img.qammunity.org/2021/formulas/physics/college/b7zkd6h6iumo67qvnqsfmzc33usec5ob98.png)
Percentage of K.E lost to heat is = 99.8 %