Answer:
Kindly go through the explanation for all the answers required
Explanation:
Values gotten from the question are: mean= 1850
standard deviation= 150
Z= \frac{x- \mu }{\sigma }
33) X= 1700
P(X>1700)=P( \frac{x- \mu }{\sigma }>\frac{1700-1850}{150})=P(Z>-1)
P(X>1700)=P(Z>-1)=1- P(Z\leq -1)=0.8413
34) X= 1950
P(X<1950)=P( \frac{x- \mu }{\sigma }<\frac{1950-1850}{150})=P(Z<0.6667)=0.7475
35) X1= 1750 and X2= 1900
P(1750\leq X\leq 1900)=P( \frac{1750-1850}{150}\leq \frac{x- \mu }{\sigma }\leq \frac{1900-1850}{150})=P(-0.6667\leq Z\leq 0.333)
P(1750\leq X\leq 1900)=P(-0.6667\leq Z\leq 0.333)=0.3781
36) X1= 1600 and X2= 2000
P(1600\leq X\leq 2000)=P( \frac{1600-1850}{150}\leq \frac{x- \mu }{\sigma }\leq \frac{2000-1850}{150})=P(-1.6667\leq Z\leq 1)
P(1600\leq X\leq 2000)=P(-1.6667\leq Z\leq 1)=0.7936
37) X1= 1550 and X2= 2100
P(1550> X> 2100)=P( \frac{1550-1850}{150}> \frac{x- \mu }{\sigma }> \frac{2100-1850}{150})
P(-2>Z>1.6667)=P(Z\leq -2)+(1-P(Z<1.6667))=0.02275+(1-0.9522)=0.0705
38) 95% Confidence interval:Critical value: Z(0.05/2)= 1.96
CI: \mu \pm Z*\sigma =>1850\pm 1.96*150
CI: 1850\pm 294=>(1850-294,1850+294)=>(1556,2144)
The smallest weight= 1556
The largest weight= 2144