Answer:
The speed of the clay immediately before the impact is 91.23 m/s
Step-by-step explanation:
Given;
mass of clay, m₁ = 12g = 0.012 kg
mass of wooden block, m₂ = 100g = 0.1 kg
initial velocity of the wooden block, u₂ = 0
distance moved by the wooden block, d = 7.5 m
coefficient of friction, μk = 0.65
Apply the principle of conservation of linear momentum;
Total momentum before collision = Total momentum after collision
m₁u₁ + m₂u₂ = v(m₁ +m₂)
where;
u₁ is the initial velocity of the clay immediately before the impact
v is the common velocity of clay-block system after impact
u₂ = 0
m₁u₁ = v(m₁ +m₂)
------- equ. (i)
Apply the principle of conservation of energy after the impact
ΔK + ΔU = 0
where;
ΔK is change in kinetic energy
ΔU is change in internal energy of the system due to frictional force

is the common velocity of the clay-block system immediately after the impact, which is equal to V in equation (i)

Therefore, the speed of the clay immediately before the impact is 91.23 m/s