Final answer:
To find the polar coordinates (r, θ) of a point given in Cartesian coordinates (x, y), we can use the equations (r, θ) = (√(x² + y²), atan2(y, x)).
Step-by-step explanation:
To find the polar coordinates (r, θ) of a point given in Cartesian coordinates (x, y), we can use the following equations:
(r, θ) = (√(x² + y²), atan2(y, x))
(a)(i) For the Cartesian coordinates (6, -6),
(r, θ) = (√(6² + (-6)²), atan2(-6, 6))
(r, θ) = (√(36 + 36), atan2(-6, 6))
(r, θ) = (6√2, -45°)
(a)(ii) For the Cartesian coordinates (6, -6),
(r, θ) = (-√(6² + (-6)²), atan2(-6, 6) + π)
(r, θ) = (-6√2, -45° + π)
(b)(i) For the Cartesian coordinates (-1, 3),
(r, θ) = (√((-1)² + 3²), atan2(3, -1))
(r, θ) = (√(1 + 9), atan2(3, -1))
(r, θ) = (√10, 116.57°)
(b)(ii) For the Cartesian coordinates (-1, 3),
(r, θ) = (-√((-1)² + 3²), atan2(3, -1) + π)
(r, θ) = (-√10, 116.57° + π)