13.7k views
5 votes
Given the hyperbola y = 1/x, find the area under the curve between x = 5 and x = 33 to 3 sig. dig. namely: integral subscript 5 superscript 33 1 over x d x space equals . State the definite integral and evaluate it:Given the hyperbola y = 1/x, find the area under the curve between x = 5 and x = 33 to 3 sig. dig. namely: integral subscript 5 superscript 33 1 over x d x space equals . State the definite integral and evaluate it:

User Mewm
by
4.9k points

1 Answer

4 votes

Answer:


\displaystyle A = \int\limits^(33)_(5) {(1)/(x)} \, dx


\displaystyle A = \ln (33)/(5)

General Formulas and Concepts:

Algebra II

  • Logarithmic Properties

Calculus

Integration

  • Integrals

Integration Rule [Fundamental Theorem of Calculus 1]:
\displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Area of a Region Formula:
\displaystyle A = \int\limits^b_a {[f(x) - g(x)]} \, dx

Explanation:

Step 1: Define

Identify


\displaystyle y = (1)/(x)

Bounds: [5, 33]

Step 2: Find Area

  1. Substitute in variables [Area of a Region Formula]:
    \displaystyle A = \int\limits^(33)_(5) {(1)/(x)} \, dx
  2. [Integral] Integrate [Logarithmic Integration]:
    \displaystyle A = \ln |x| \bigg| \limits^(33)_5
  3. Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:
    \displaystyle A = \ln |33| - \ln |5|
  4. Condense:
    \displaystyle A = \ln (33)/(5)

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

User Mrkj
by
5.6k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.