158k views
2 votes
A student was asked to find a 95% confidence interval for widget width using data from a random sample of size n = 21. Which of the following is a correct interpretation of the interval 10.6 < μ < 29.1? Check all that are correct.

A. With 95% confidence, the mean width of all widgets is between 10.6 and 29.1.
B. With 95% confidence, the mean width of a randomly selected widget will be between 10.6 and 29.1.
C. The mean width of all widgets is between 10.6 and 29.1, 95% of the time.
D. We know this is true because the mean of our sample is between 10.6 and 29.1.
E. There is a 95% chance that the mean of the population is between 10.6 and 29.1.
F. There is a 95% chance that the mean of a sample of 21 widgets will be between 10.6 and 29.1.

User Maximus
by
4.9k points

1 Answer

6 votes

Answer:

Explanation:

Confidence interval is written in the form,

(Sample mean - margin of error, sample mean + margin of error)

The sample mean, x is the point estimate for the population mean. A 95% confidence interval does not mean 95% probability. It is used to express how confident we are that the true population parameter lies within the confidence interval.

With a lower limit of 10.6 and an upper limit of 29.1, and confidence interval of 95%, the correct option is

With 95% confidence, the mean width of a randomly selected widget will be between 10.6 and 29.1.

User Tiny Instance
by
5.9k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.