214k views
4 votes
Choose the aqueous solution that has the highest boiling point. These are all solutions of nonvolatile solutes and you should assume ideal van't Hoff factors where applicable. Choose the aqueous solution that has the highest boiling point. These are all solutions of nonvolatile solutes and you should assume ideal van't Hoff factors where applicable. 0.100 m C6H12O6 0.100 m NaCl 0.100 m AlCl3 0.100 m MgCl2

User Fred Guth
by
5.6k points

1 Answer

2 votes

Answer:

0.100 m AlCl3 will have the highest boiling point

Step-by-step explanation:

Step 1: Data given

The molal boiling point elevation constant for water is 0.51°C/m

Since those are all aqueous solutions, the have the same molal boiling point elevation constant

Step 2:

0.100 m C6H12O6

ΔT = i*Kb*m

⇒with ΔT is the boiling point elevation = TO BE DETERMINED

⇒with i = the van't Hoff factr = 1

⇒with Kb = The molal boiling point elevation constant for water is 0.51°C/m

⇒with m = the molality = 0.100m

ΔT = 1 * 0.51 * 0.100

ΔT = 0.051 °C

0.100 m NaCl

ΔT = i*Kb*m

⇒with ΔT is the boiling point elevation = TO BE DETERMINED

⇒with i = the van't Hoff factr = Na+ + Cl- = 2

⇒with Kb = The molal boiling point elevation constant for water is 0.51°C/m

⇒with m = the molality = 0.100m

ΔT =2 * 0.51 * 0.100

ΔT = 0.102 °C

0.100 m AlCl3

ΔT = i*Kb*m

⇒with ΔT is the boiling point elevation = TO BE DETERMINED

⇒with i = the van't Hoff factr = Al^3+ + 3Cl- = 4

⇒with Kb = The molal boiling point elevation constant for water is 0.51°C/m

⇒with m = the molality = 0.100m

ΔT =4 * 0.51 * 0.100

ΔT = 0.204 °C

0.100 m MgCl2

ΔT = i*Kb*m

⇒with ΔT is the boiling point elevation = TO BE DETERMINED

⇒with i = the van't Hoff factr = Mg^2+ +2Cl- = 3

⇒with Kb = The molal boiling point elevation constant for water is 0.51°C/m

⇒with m = the molality = 0.100m

ΔT =3 * 0.51 * 0.100

ΔT = 0.153 °C

0.100 m AlCl3 will have the highest boiling point

User Draz
by
5.4k points