Answer:
General form of an exponential equation:
![y=ab^x](https://img.qammunity.org/2023/formulas/mathematics/high-school/hye5rg1h8wj3ohgdt4j1vpepdhoym0w9ex.png)
where:
- a is the initial value
- b is the growth factor
- x is the independent variable
- y is the dependent variable
Let x = years
Let y = investment value
Use (2, 692) and (4, 952) to find a and b of the exponential equation:
![ab^2=692](https://img.qammunity.org/2023/formulas/mathematics/high-school/mg43gas3rtt1hgf2ulbyppixu3r0ivxtjt.png)
![ab^4=952](https://img.qammunity.org/2023/formulas/mathematics/high-school/y16ta412juz8dm2jq25aa7qhn5r0yiv4cg.png)
![\implies (ab^4)/(ab^2)=(952)/(692)](https://img.qammunity.org/2023/formulas/mathematics/high-school/3mfeu26gk9i44spx480b2imudrk7t5n08l.png)
![\implies b^2=(238)/(173)](https://img.qammunity.org/2023/formulas/mathematics/high-school/yn0w8pzb9ep1yu1laq6sceb7329wahykgf.png)
![\implies b=\sqrt{(238)/(173)}=1.17\:\textsf{(nearest hundredth)}](https://img.qammunity.org/2023/formulas/mathematics/high-school/gcv4xr7oa353ri3mjnvagp1rkoo73b64rt.png)
![\implies ab^2=a\left((238)/(173)\right)=692](https://img.qammunity.org/2023/formulas/mathematics/high-school/qmz9bhw2wyky23v7wjj36awtbjql8xlizx.png)
![\implies a=\left((59858)/(119)\right)=503.01\:\textsf{(nearest hundredth)}](https://img.qammunity.org/2023/formulas/mathematics/high-school/jxso872y2vdxw5ku9emv2zori3dwj9982f.png)
Therefore, the exponential equation is:
![y=503.01(1.17)^x](https://img.qammunity.org/2023/formulas/mathematics/high-school/4gjy0m793xjyif4ar5by87deayelp8ou1c.png)
18 years after the initial investment is when
:
![\implies 503.01(1.17)^(18)=8490](https://img.qammunity.org/2023/formulas/mathematics/high-school/vffl7a1jmaxdqp6qx04zksdvlfqyp4exvz.png)
Therefore, the amount closest to the value of the investment 18 years after the initial investment is $8490
(If you use the exact values for a and b rather than the rounded values, the amount is $8879)