Answer:
The base is 8 and the height is 3, so the area is 8 (3) = 24 square units.
Explanation:
The area of the parallelogram is given by the following expression:
![A = \|\vec u* \vec v\|](https://img.qammunity.org/2021/formulas/mathematics/college/cm5xnt1qqhs4g7o0no6e308zhzq8fg3zdv.png)
The vectors are, respectively:
![\vec u = (10-2, 1 - 1,0-0)](https://img.qammunity.org/2021/formulas/mathematics/college/kp4rqpec90sfmllq93gfejmpmo4dirh86y.png)
![\vec u = (8,0,0)](https://img.qammunity.org/2021/formulas/mathematics/college/n55dxkchmsaajndp8hkyzwpnrfnforkwou.png)
The base of the parallelogram is 8 units.
![\vec v = (8-2, 4-1,0-0)](https://img.qammunity.org/2021/formulas/mathematics/college/s7jvem773dghrq254okxfsw1epc1ziovi2.png)
![\vec v = (6,3,0)](https://img.qammunity.org/2021/formulas/mathematics/college/hojrjysrqly5s4jhbu4zj277cntcc8y7x8.png)
The height of the parallelogram is 3 units.
The cross product of both vectors is:
![\vec u * \vec v = (0,0,24)](https://img.qammunity.org/2021/formulas/mathematics/college/p2d5188jrhi3em5iv8kxzb1otmnu30zgpr.png)
The area of the parallelogram is given by the norm of the resulting vector:
![\|\vec u * \vec v\| = 24](https://img.qammunity.org/2021/formulas/mathematics/college/32qg79e6jvdoujnkfngk5b57orpap65dsp.png)