91.4k views
0 votes
Suppose SAT Writing scores are normally distributed with a mean of 488488 and a standard deviation of 111111. A university plans to award scholarships to students whose scores are in the top 8%8%. What is the minimum score required for the scholarship? Round your answer to the nearest whole number, if necessary.

User Omu
by
4.7k points

1 Answer

2 votes

Answer:

The minimum score required for the scholarship is 644.

Explanation:

Problems of normally distributed samples are solved using the z-score formula.

In a set with mean
\mu and standard deviation
\sigma, the zscore of a measure X is given by:


Z = (X - \mu)/(\sigma)

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.

In this problem, we have that:


\mu = 488, \sigma = 111

What is the minimum score required for the scholarship?

Top 8%, which means that the minimum score is the 100-8 = 92th percentile, which is X when Z has a pvalue of 0.92. So it is X when Z = 1.405.


Z = (X - \mu)/(\sigma)


1.405 = (X - 488)/(111)


X - 488 = 1.405*111


X = 644

The minimum score required for the scholarship is 644.

User Mdpoleto
by
4.3k points