192k views
0 votes
Pleeease open the image and hellllp me

Pleeease open the image and hellllp me-example-1
User Mushy
by
2.8k points

1 Answer

4 votes

1. Rewrite the expression in terms of logarithms:


y=x^x=e^(\ln x^x)=e^(x\ln x)

Then differentiate with the chain rule (I'll use prime notation to save space; that is, the derivative of y is denoted y' )


y'=e^(x\ln x)(x\ln x)'=x^x(x\ln x)'


y'=x^x(x'\ln x+x(\ln x)')


y'=x^x\left(\ln x+\frac xx\right)


y'=x^x(\ln x+1)

2. Chain rule:


y=\ln(\csc(3x))


y'=\frac1{\csc(3x)}(\csc(3x))'


y'=\sin(3x)\left(-\cot^2(3x)(3x)'\right)


y'=-3\sin(3x)\cot^2(3x)

Since
\cot x=(\cos x)/(\sin x), we can cancel one factor of sine:


y'=-3(\cos^2(3x))/(\sin(3x))=-3\cos(3x)\cot(3x)

3. Chain rule:


y=e^{e^(\sin x)}


y'=e^{e^(\sin x)}\left(e^(\sin x)\right)'


y'=e^{e^(\sin x)}e^(\sin x)(\sin x)'


y'=e^{e^(\sin x)+\sin x}\cos x

4. If you're like me and don't remember the rule for differentiating logarithms of bases not equal to e, you can use the change-of-base formula first:


\log_2x=(\ln x)/(\ln2)

Then


(\log_2x)'=\left((\ln x)/(\ln 2)\right)'=\frac1{\ln 2}

So we have


y=\cos^2(\log_2x)


y'=2\cos(\log_2x)\left(\cos(\log_2x)\right)'


y'=2\cos(\log_2x)(-\sin(\log_2x))(\log_2x)'


y'=-\frac2{\ln2}\cos(\log_2x)\sin(\log_2x)

and we can use the double angle identity and logarithm properties to condense this result:


y'=-\frac1{\ln2}\sin(2\log_2x)=-\frac1{\ln2}\sin(\log_2x^2)

5. Differentiate both sides:


\left(x^2-y^2+\sin x\,e^y+\ln y\,x\right)'=0'


2x-2yy'+\cos x\,e^y+\sin x\,e^yy'+\frac{xy'}y+\ln y=0


-\left(2y-\sin x\,e^y-\frac xy\right)y'=-\left(2x+\cos x\,e^y+\ln y\right)


y'=(2x+\cos x\,e^y\ln y)/(2y-\sin x\,e^y-\frac xy)


y'=(2xy+\cos x\,ye^y\ln y)/(2y^2-\sin x\,ye^y-x)

6. Same as with (5):


\left(\sin(x^2+\tan y)+e^(x^3\sec y)+2x-y+2\right)'=0'


\cos(x^2+\tan y)(x^2+\tan y)'+e^(x^3\sec y)(x^3\sec y)'+2-y'=0


\cos(x^2+\tan y)(2x+\sec^2y y')+e^(x^3\sec y)(3x^2\sec y+x^3\sec y\tan y\,y')+2-y'=0


\cos(x^2+\tan y)(2x+\sec^2y y')+e^(x^3\sec y)(3x^2\sec y+x^3\sec y\tan y\,y')+2-y'=0


\left(\cos(x^2+\tan y)\sec^2y+x^3\sec y\tan y\,e^(x^3\sec y)-1\right)y'=-\left(2x\cos(x^2+\tan y)+3x^2\sec y\,e^(x^3\sec y)+2\right)


y'=-(2x\cos(x^2+\tan y)+3x^2\sec y\,e^(x^3\sec y)+2)/(\cos(x^2+\tan y)\sec^2y+x^3\sec y\tan y\,e^(x^3\sec y)-1)

7. Looks like


y=x^2-e^(2x)

Compute the second derivative:


y'=2x-2e^(2x)


y''=2-4e^(2x)

Set this equal to 0 and solve for x :


2-4e^(2x)=0


4e^(2x)=2


e^(2x)=\frac12


2x=\ln\frac12=-\ln2


x=-\frac{\ln2}2

User Chepech
by
3.0k points