Let r represent the radius of cylinder.
We have been given that the height of a right circular cylinder is 1.5 times the radius of the base. So the height of the cylinder would be
.
We will use lateral surface area of pyramid to solve our given problem.
, where,
LSA = Lateral surface area of pyramid,
r = Radius,
h = height.
Upon substituting our given values in above formula, we will get:
Now we will find the total surface area of cylinder.
![TSA=2\pi r(r+h)](https://img.qammunity.org/2021/formulas/mathematics/high-school/h9hhplxk1t54ojz07czi0gu8xs2bmraxcg.png)
![TSA=2\pi r(r+1.5r)](https://img.qammunity.org/2021/formulas/mathematics/high-school/7rh5no2g1xomhgj1xsk2o0c1vgc2x8skug.png)
![TSA=2\pi r(2.5r)](https://img.qammunity.org/2021/formulas/mathematics/high-school/6oc1vo9zwjj4pu5dwix0wt3kg2ezrj7f8w.png)
![(TSA)/(LSA)=(2\pi r(2.5r))/(2\pi r(1.5r))](https://img.qammunity.org/2021/formulas/mathematics/high-school/835tfn8sg5ced3t3bhqy6llg0n44psr150.png)
![(TSA)/(LSA)=(2.5r)/(1.5r)](https://img.qammunity.org/2021/formulas/mathematics/high-school/thiykwmw14folf92cfz5o50znqtqopfyhk.png)
![(TSA)/(LSA)=(25)/(15)](https://img.qammunity.org/2021/formulas/mathematics/high-school/rk0bi5b2ta8sjypfofqr478qpkj73c37qt.png)
![(TSA)/(LSA)=(5)/(3)](https://img.qammunity.org/2021/formulas/mathematics/high-school/onozp5u1bvt60jtd47nth4crm8nkyrdmhe.png)
Therefore, the ratio of total surface area to lateral surface area is
.