Answer:
6!=720
3! • 2!=12
Explanation:
We must recall that the factorial of a number n (positive or zero) is the product of all the integers from n down to 1
n!= n(n-1)(n-2)...1
Let's evaluate the given expressions
6!=6\cdot 5\cdot 4\cdot 3\cdot 2\cdot 1=720
Similarly
3!\cdot 2!=(3\cdot 2\cdot 1)\cdot (2\cdot 1)=6\cdot 2=12
Finally
\displaystyle \frac{6!}{3!}=\frac{6\cdot 5\cdot 4\cdot 3\cdot 2\cdot 1}{3\cdot 2\cdot 1}
\displaystyle \frac{6!}{3!}= \frac{720}{6}=120