Answer:
A) d = 11.8m
B) d = 4.293 m
Step-by-step explanation:
A) We are told that the angle of incidence;θ_i = 70°.
Now, if refraction doesn't occur, the angle of the light continues to be 70° in the water relative to the normal. Thus;
tan 70° = d/4.3m
Where d is the distance from point B at which the laser beam would strike the lakebottom.
So,d = 4.3*tan70
d = 11.8m
B) Since the light is moving from air (n1=1.00) to water (n2=1.33), we can use Snell's law to find the angle of refraction(θ_r)
So,
n1*sinθ_i = n2*sinθ_r
Thus; sinθ_r = (n1*sinθ_i)/n2
sinθ_r = (1 * sin70)/1.33
sinθ_r = 0.7065
θ_r = sin^(-1)0.7065
θ_r = 44.95°
Thus; xonsidering refraction, distance from point B at which the laser beam strikes the lake-bottom is calculated from;
d = 4.3 tan44.95
d = 4.293 m