170k views
25 votes
How can I solve this trig identity manipulating tan instead of the right side?

How can I solve this trig identity manipulating tan instead of the right side?-example-1

1 Answer

1 vote

Answer:

Trig identities


\tan(\theta)=(\sin(\theta))/(\cos(\theta))


\sin(\thet2\theta)=2 \sin(\theta)\cos(\theta)


\begin{aligned}\cos(\thet2\theta) & =1-2\sin^2(\theta)\\2\sin^2(\theta) & = 1-\cos(2\theta) \end{aligned}

Solution


\tan(\theta)=(\sin(\theta))/(\cos(\theta))


\textsf{Multiply by}\:(2\sin(\theta))/(2\sin(\theta)):


\begin{aligned}\implies \tan(\theta) & =(\sin(\theta))/(\cos(\theta)) * (2\sin(\theta))/(2\sin(\theta))\\\\ & =(2\sin^2(\theta))/(2\sin(\theta)\cos(\theta))\\\\ & = (1-\cos(2\theta))/(\sin(2\theta))\end{aligned}

Therefore,


\implies (1-\cos(2\theta))/(\sin(2\theta))=(1-\cos(2\theta))/(\sin(2\theta))

User Ben Fried
by
5.1k points