170k views
25 votes
How can I solve this trig identity manipulating tan instead of the right side?

How can I solve this trig identity manipulating tan instead of the right side?-example-1

1 Answer

1 vote

Answer:

Trig identities


\tan(\theta)=(\sin(\theta))/(\cos(\theta))


\sin(\thet2\theta)=2 \sin(\theta)\cos(\theta)


\begin{aligned}\cos(\thet2\theta) & =1-2\sin^2(\theta)\\2\sin^2(\theta) & = 1-\cos(2\theta) \end{aligned}

Solution


\tan(\theta)=(\sin(\theta))/(\cos(\theta))


\textsf{Multiply by}\:(2\sin(\theta))/(2\sin(\theta)):


\begin{aligned}\implies \tan(\theta) & =(\sin(\theta))/(\cos(\theta)) * (2\sin(\theta))/(2\sin(\theta))\\\\ & =(2\sin^2(\theta))/(2\sin(\theta)\cos(\theta))\\\\ & = (1-\cos(2\theta))/(\sin(2\theta))\end{aligned}

Therefore,


\implies (1-\cos(2\theta))/(\sin(2\theta))=(1-\cos(2\theta))/(\sin(2\theta))

User Ben Fried
by
8.2k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories