Answer:
Check the explanation
Explanation:
Number of transactions in a day is sum of number of withdrawals and number of deposits. So,
Number of transactions in a day, Z = X + Y
Moment Generating function of Z is,
T+1
Expected number of transactions in a day = E[Z]
![= \frac{\mathrm{d} }{\mathrm{d} t}_(t=0)M_Z(t) = (r+1)\left ( (p)/(1-qe^t) \right )^(r) * (-p)/((1-qe^t)^2) * (-qe^t) for t = 0](https://img.qammunity.org/2021/formulas/mathematics/college/gwippnozima4p2ruprt3t7hsz67mip7bgn.png)
![= (r+1)\left ( (p)/(1-qe^0) \right )^(r) * (-p)/((1-qe^0)^2) * (-qe^0)](https://img.qammunity.org/2021/formulas/mathematics/college/lofk7iu6tm9iyqwsjj9rs32sph064prbfg.png)
![= (r+1)\left ( (p)/(1-q) \right )^(r) * (-p)/((1-q)^2) * (-q)](https://img.qammunity.org/2021/formulas/mathematics/college/jc8zfp74iorgy6rd24piliwz0dq3rm3iut.png)
![= (r+1)\left ( (p)/(p) \right )^(r) * (-p)/((p)^2) * (-q)](https://img.qammunity.org/2021/formulas/mathematics/college/evynck57rpo5ckexkekx7c5o2pdvkte77t.png)
![= ((r+1)q)/(p)](https://img.qammunity.org/2021/formulas/mathematics/college/5dr2ehnwjk1hrdaayqgtb81nz1sqjziqqc.png)