39.6k views
1 vote
If cosθ=1/3 , then sinθ = _____.

1 Answer

2 votes

Answer:


sin\theta=(2 √(2) )/(3 )

Explanation:

We can use the following trigonometric property that relates the sine function and the cosine function:


sin^2\theta+cos^2\theta=1

we solve for
sin \theta:


sin^2\theta=1-cos^2\theta\\\\sin\theta=√(1-cos^2\theta)

we are give the value of
cos\theta:


cos\theta =(1)/(3)

so we substitute this value:


sin\theta=\sqrt{1-((1)/(3) )^2}

and we solve the expression:


sin\theta=\sqrt{1-(1)/(9) } \\\\sin\theta=\sqrt{(8)/(9) } \\\\sin\theta=(√(8) )/(√(9) ) \\\\sin\theta=(2 √(2) )/(3 )

the answer is:
sin\theta=(2 √(2) )/(3 )

User Rhubbarb
by
7.4k points