Answer:
1.74x10⁻⁵ V
Step-by-step explanation:
n = 85.7 turns/cm => 8570 turns/metre
The field inside the long solenoid is given by B = μ₀ni
B = 4πx10⁻⁷ x 8570 x 0.175t² = 1.884x10⁻³ t²
dB/dt = 3.78x10⁻³ t
Cross-sectional Area'A'= 2.16 cm²=> 2.16 x
m²
Now, rate of change of flux linkage '|Emf|' is given by:
|Emf| = d(NAB)/dt = NA dB/dt
|Emf| = 5 x 2.16 x
x 3.78x10⁻³ t
|Emf| = 4.0824x10⁻⁶ t
Considering time 't' at which the current = 3.2A , we have
3.2 = 0.175T²
T² = 3.2/0.175
T = 4.28 s
|emf| = 4.0824x10⁻⁶ t => 4.0824x10⁻⁶ x4.28
|emf|= 1.74x10⁻⁵ V
Therefore,the magnitude of the emf induced in the secondary winding is 1.74x10⁻⁵ V