141k views
5 votes
Find the area of the rectangle polynomial​

Find the area of the rectangle polynomial​-example-1

2 Answers

4 votes

hello,


Area =(2x + 4) * ( 4x - 2) \\ Area =8 {x}^(2) - 4x + 16x - 8 \\ Area = {8x}^(2) + 12x - 8


\boxed{crsjr}

User Haluk
by
5.5k points
1 vote

Answer:


\Longrightarrow: \boxed{\sf{8x^2+12x-8}}

Explanation:

Using the distributive property, you multiply by the area to find the area of the rectangle polynomial.


: \Longrightarrow \sf{(Area)= (2x+4)*(4x-2)}

Solve.

(2x+4)*(4x-2)

Multiply by expand.

Use the distributive property.

Distributive property:

⇒ A(B+C)=AB+AC

Use the FOIL method.

FOIL method:


\Longrightarrow: \sf{\left(A+B\right)\left(C+D\right)=AC+AD+BC+BD}


\Longrightarrow: \sf{2x\cdot \:4x+2x\left(-2\right)+4\cdot \:4x+4\left(-2\right)}


\Longrightarrow: \boxed{\sf{=8x^2+12x-8}}

  • Therefore, the correct answer is 8x²+12x-8.

I hope this helps! Let me know if you have any questions.

User Laughedelic
by
5.9k points