Answer:
- S(t) = 5t³+8t+3
- 19.7m approximately
Step-by-step explanation:
Given the velocity if an object to be
v(t) = At² + B where t is the time in seconds
Velocity is the change in displacement of a body with respect to time.
V(t) = dS(t)/dt
Making S(t) the subject of the formula
dS(t) = v(t)dt
Integrating both sides
∫dS(t) =∫v(t)dt
S(t) = ∫(At²+B)dt
S(t) = At³/3+Bt + C... 1
In its initial position s(0) = 0
t = 0, s = 0
S(0) = A(0)³/3+B(0)+C
S(0)= C
a) The object's position function s(t) if A = 15, B = 8 and C = 3 can be gotten by substituting this value into eqn 1
S(t) = 15t³/3+8t+3
S(t) = 5t³+8t+3
b) For the distance traveled by the object between t equals 1 and t equals 2 seconds
When t = 1s
S(1) = 5(1)³/3+8(1)+3
S(1) = 5/3+8+3
S(1) = 5+24+9/3
S(1) = 38/3 m
When t = 2secs
S(2) = 5(2)³/3+8(2)+3
S(2) = 40/3+16+3
S(2) = (40+48+9)/3
S(2) = 97/3
Distance travelled between this times will be 97/3-38/3
= 59/3
= 19.7m approximately