55.8k views
2 votes
Suppose a team of researchers is studying the half-life of a drug in the human body (i.e. how long it takes for 1 2 of the drug to be broken down by the body). They take 50 people, administer a standard dose of the drug, and measure the half-life for each of these people. They find the average half-life to be 7.4 hours. Suppose the variance of half-life is known to be 0.16. Find the 95% confidence interval for population half-life based on this sample. What is the length of this interval?

User Malburrito
by
8.0k points

1 Answer

3 votes

Answer:

95% confidence interval for the population half-life based on this sample is [7.29 , 7.51].

Explanation:

We are given that the average half-life to be 7.4 hours. Suppose the variance of half-life is known to be 0.16.

They take 50 people, administer a standard dose of the drug, and measure the half-life for each of these people.

Firstly, the pivotal quantity for 95% confidence interval for the population mean is given by;

P.Q. =
(\bar X-\mu)/((\sigma)/(√(n) ) ) ~ N(0,1)

where,
\bar X = sample average half-life = 7.4 hours


\sigma = population standard deviation =
√(0.16) = 0.4 hour

n = sample of people = 50


\mu = population mean

Here for constructing 95% confidence interval we have used One-sample z test statistics as we know about population standard deviation.

So, 95% confidence interval for the population mean,
\mu is ;

P(-1.96 < N(0,1) < 1.96) = 0.95 {As the critical value of z at 2.5% level

of significance are -1.96 & 1.96}

P(-1.96 <
(\bar X-\mu)/((\sigma)/(√(n) ) ) < 1.96) = 0.95

P(
-1.96 * {(\sigma)/(√(n) ) } <
{\bar X-\mu} <

P(
\bar X-1.96 * {(\sigma)/(√(n) ) } <
\mu <
\bar X+1.96 * {(\sigma)/(√(n) ) } ) = 0.95

95% confidence interval for
\mu = [
\bar X-1.96 * {(\sigma)/(√(n) ) } ,
\bar X+1.96 * {(\sigma)/(√(n) ) } ]

= [
7.4-1.96 * {(0.4)/(√(50) ) } ,
7.4+1.96 * {(0.4)/(√(50) ) } ]

= [7.29 , 7.51]

Therefore, 95% confidence interval for the population half-life based on this sample is [7.29 , 7.51].

The length of this interval is = 7.51 - 7.29 = 0.22

User Sam Makin
by
8.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories