Answer:
95% confidence interval for the population half-life based on this sample is [7.29 , 7.51].
Explanation:
We are given that the average half-life to be 7.4 hours. Suppose the variance of half-life is known to be 0.16.
They take 50 people, administer a standard dose of the drug, and measure the half-life for each of these people.
Firstly, the pivotal quantity for 95% confidence interval for the population mean is given by;
P.Q. =
~ N(0,1)
where,
= sample average half-life = 7.4 hours
= population standard deviation =
= 0.4 hour
n = sample of people = 50
= population mean
Here for constructing 95% confidence interval we have used One-sample z test statistics as we know about population standard deviation.
So, 95% confidence interval for the population mean,
is ;
P(-1.96 < N(0,1) < 1.96) = 0.95 {As the critical value of z at 2.5% level
of significance are -1.96 & 1.96}
P(-1.96 <
< 1.96) = 0.95
P(
<
<
P(
<
<
) = 0.95
95% confidence interval for
= [
,
]
= [
,
]
= [7.29 , 7.51]
Therefore, 95% confidence interval for the population half-life based on this sample is [7.29 , 7.51].
The length of this interval is = 7.51 - 7.29 = 0.22