Final answer:
An observer on Starship B will measure the same time interval as that on Starship A, because they are both travelling at the same speed and in the same direction relative to Earth. Starship C's measurement would differ due to its opposite direction of travel relative to A and B.
Step-by-step explanation:
To determine which reference frame measures a time interval equal to the time interval measured by the clock aboard Starship A, we need to consider the principles of the theory of special relativity. Since Starship B is traveling at the same speed and in the same direction as Starship A relative to Earth, the time dilation effect will be the same for both starships. Therefore, an observer on Starship B will measure the same time interval on their clock as that measured on Starship A's clock.
In contrast, Starship C is moving at the same speed but in the opposite direction relative to Earth, and its relative velocity to Starships A and B is not zero. As a result, the time interval measured on Starship C will not match the time interval measured on Starship A's clock.
So, the time interval that equals the time interval measured by the clock aboard Starship A can be measured in the reference frame of Starship B, which is moving at the same speed and in the same direction as Starship A relative to Earth.