Answer:
1, 4 or -1, -4
Explanation:
Let the two numbers be x and such that x > y.
According to the first condition:
![x^2 -y^2= 15](https://img.qammunity.org/2023/formulas/mathematics/college/ktj8ml6thev697oy8p4n12t9d8i9bcponx.png)
......(1)
According to the second condition:
![3x^2 +y^2= 49](https://img.qammunity.org/2023/formulas/mathematics/college/gwrjhznl022knm483lof588da279b1z71p.png)
![\implies 3(y^2+15) +y^2= 49](https://img.qammunity.org/2023/formulas/mathematics/college/7ozlc27umn0wmy95sf3qleqiopgftzudek.png)
(From equation 1)
![\implies 3y^2+45 +y^2= 49](https://img.qammunity.org/2023/formulas/mathematics/college/xt111se2znjvwg2rj6o62k29o3hnnd4w8w.png)
![\implies 4y^2 =49-45](https://img.qammunity.org/2023/formulas/mathematics/college/14spg5difw6zsznwac0mntklr2gjnlp53r.png)
![\implies 4y^2 =4](https://img.qammunity.org/2023/formulas/mathematics/college/8432jotecfzuijlpaw587bcjhy7qar0dte.png)
![\implies y^2 =(4)/(4)](https://img.qammunity.org/2023/formulas/mathematics/college/mo213a6u0abq4vsg7v51v105bnwb4euvnj.png)
![\implies y^2 =1](https://img.qammunity.org/2023/formulas/mathematics/college/yuhtemvg86sg68nwi6rpltfvf0h4diuvz7.png)
![\implies y =\pm 1](https://img.qammunity.org/2023/formulas/mathematics/college/8sbfqreny1jwj7xpfdh6f2t6ps60zn6ied.png)
When y = 1
![\implies x^2 =(1)^2+15=1+15=16](https://img.qammunity.org/2023/formulas/mathematics/college/bbcq22e3w2zak058alz63oepst3i8zx94n.png)
![\implies x =\pm 4](https://img.qammunity.org/2023/formulas/mathematics/college/w6eb73x29f3zztkwb04lo3lp6u9aojl50z.png)
When y = -1
![\implies x^2 =(-1)^2+15=1+15=16](https://img.qammunity.org/2023/formulas/mathematics/college/ngtf33qlll3c67arxoyyobinxpdt4qtd4l.png)
![\implies x =\pm 4](https://img.qammunity.org/2023/formulas/mathematics/college/w6eb73x29f3zztkwb04lo3lp6u9aojl50z.png)
Thus, the required numbers are either 1, 4 or -1, -4