Answer:12.8 ft/s
Step-by-step explanation:
Given
Speed of hoop
![v=26\ ft/s](https://img.qammunity.org/2021/formulas/physics/college/j4rsw4hb1u0rgsninvqk1fnpdygdtkynrt.png)
height of top
![h=16\ ft](https://img.qammunity.org/2021/formulas/physics/college/htlmskrbir9qp7rio2ibypq74ag1tzzscx.png)
Initial energy at bottom is
![E_b=(1)/(2)mv^2+(1)/(2)I\omega ^2](https://img.qammunity.org/2021/formulas/physics/college/tcjp2bi2vz9nw90flbizjgpp4szmukyjgw.png)
Where m=mass of hoop
I=moment of inertia of hoop
=angular velocity
for pure rolling
![v=\omega R](https://img.qammunity.org/2021/formulas/physics/high-school/uzqjz9okh3eq6knqwk86yijak98lgauzwn.png)
![I=mR^2](https://img.qammunity.org/2021/formulas/physics/college/xv5rdbp7lm4bxmpo8g6q5wlq0ebebenke9.png)
![E_b=(1)/(2)mv^2+(1)/(2)mR^2* ((v)/(R))^2](https://img.qammunity.org/2021/formulas/physics/college/6zsvsqeco5izdu5yvsglzyx8k518jfcfeu.png)
![E_b=mv^2=m(26)^2=676m](https://img.qammunity.org/2021/formulas/physics/college/zjxc8da8nznkqj3lbc4bdollzesan61pkr.png)
Energy required to reach at top
![E_T=mgh=m* 32.2* 16](https://img.qammunity.org/2021/formulas/physics/college/bbgggk0k9riyymahj8gcqqul0vujtul0hn.png)
![E_T=512.2m](https://img.qammunity.org/2021/formulas/physics/college/scul7gnimbdeen0n8pew84m49c4cl39w5t.png)
Thus 512.2 m is converted energy is spent to raise the potential energy of hoop and remaining is in the form of kinetic and rotational energy
![\Delta E=676m-512.2m=163.8m](https://img.qammunity.org/2021/formulas/physics/college/24a7azxdp77pjbt02tm4gxrru9ifscjmx0.png)
Therefore
![163.8 m=mv^2](https://img.qammunity.org/2021/formulas/physics/college/aybizcw7jrxirj9nlg4k4hjfuuntbk9nzu.png)
![v=√(163.8)](https://img.qammunity.org/2021/formulas/physics/college/rl4xijxac7n5kvkupamr0qf5mvxfx82mhu.png)
![v=12.798\approx 12.8\ ft/s](https://img.qammunity.org/2021/formulas/physics/college/7en07w2ybjrezpcjfeoulcup34zb3v521i.png)