Answer:
(π6x+21π)m²
Explanation:
Solution,
For small circle
radius(r)=x+2
Area(A1)=πr²
Area(A1)=π×(x+2)²
Area(A1)=π×(x²+4x+4)
Area(A1)=πx²+π4x+4π
For big circle
radius(r)=x+5
Area(A2)=πr²
Area(A2)=π×(x+5)²
Area(A2)=π×(x²+10x+25)
Area(A2)=πx²+π10x+25π
Again,
Area of shaded part=A2-A1
Area of shaded part=πx²+π10x+25π-(πx²+π4x+4π)
Area of shaded part=πx²+π10x+25π-πx²-π4x-4π
Area of shaded part=π6x+21π