206k views
2 votes
Estimate the area underneath the curve by evaluating the Rieman sum using 6 rectangles

Estimate the area underneath the curve by evaluating the Rieman sum using 6 rectangles-example-1

1 Answer

3 votes

Split up the interval [0, 4] into 6 subintervals of equal length (4-0)/6 = 2/3:

[0, 2/3], [2/3, 4/3], [4/3, 2], [2, 8/3], [8/3, 10/3], [10/3, 4]

The right endpoints form an arithmetic sequence,


r_i=\frac23+\frac{2(i-1)}3=\frac{2i}3

where
i=1,2,3,\ldots,6.

We estimate the area under the curve over each subinterval by a rectangle with length 2/3 and height equal to the value of the function at the right endpoint. Then the value of the integral is approximately equal to the sum of these rectangles' areas:


\displaystyle\int_0^4f(x)\,\mathrm dx\approx\frac23\sum_(i=1)^6f(r_i)

We have
f(x)=20-x^2, so


f(r_i)=f\left(\frac{2i}3\right)=20-\frac{4i^2}9


\implies\displaystyle\int_0^4f(x)\,\mathrm dx\approx\frac{40}3\sum_(i=1)^61+\left(\frac23\right)^3\sum_(i=1)^6i^2

Recall that


\displaystyle\sum_(i=1)^n1=n


\displaystyle\sum_(i=1)^ni^2=\frac{n(n+1)(2n+1)}6


\implies\displaystyle\int_0^4f(x)\,\mathrm dx\approx\frac{40}3+\left(\frac23\right)^3\frac{6\cdot7\cdot13}6=(1088)/(27)

User DRz
by
6.3k points