Split up the interval [0, 4] into 6 subintervals of equal length (4-0)/6 = 2/3:
[0, 2/3], [2/3, 4/3], [4/3, 2], [2, 8/3], [8/3, 10/3], [10/3, 4]
The right endpoints form an arithmetic sequence,
![r_i=\frac23+\frac{2(i-1)}3=\frac{2i}3](https://img.qammunity.org/2021/formulas/mathematics/college/giznlx9cwvy7zlnarc1ogpwkeb8juzotpd.png)
where
.
We estimate the area under the curve over each subinterval by a rectangle with length 2/3 and height equal to the value of the function at the right endpoint. Then the value of the integral is approximately equal to the sum of these rectangles' areas:
![\displaystyle\int_0^4f(x)\,\mathrm dx\approx\frac23\sum_(i=1)^6f(r_i)](https://img.qammunity.org/2021/formulas/mathematics/college/mt64vx7dmu0mu4si3v148vin79zx5skw7u.png)
We have
, so
![f(r_i)=f\left(\frac{2i}3\right)=20-\frac{4i^2}9](https://img.qammunity.org/2021/formulas/mathematics/college/ymdzw7r0ezesr82u0daagthfxrr5e00ycp.png)
![\implies\displaystyle\int_0^4f(x)\,\mathrm dx\approx\frac{40}3\sum_(i=1)^61+\left(\frac23\right)^3\sum_(i=1)^6i^2](https://img.qammunity.org/2021/formulas/mathematics/college/2zq1p1ick7t3gyefde72wxi2sr5yhn225f.png)
Recall that
![\displaystyle\sum_(i=1)^n1=n](https://img.qammunity.org/2021/formulas/mathematics/college/w1cwihd3e4n3yr57b2b8smbb4tm76warbe.png)
![\displaystyle\sum_(i=1)^ni^2=\frac{n(n+1)(2n+1)}6](https://img.qammunity.org/2021/formulas/mathematics/college/wcr4mkllffhvdt2n3qc95aghbl5i3cz1bc.png)
![\implies\displaystyle\int_0^4f(x)\,\mathrm dx\approx\frac{40}3+\left(\frac23\right)^3\frac{6\cdot7\cdot13}6=(1088)/(27)](https://img.qammunity.org/2021/formulas/mathematics/college/icg644qcw8saodyhmy6l1v8zu3pbzitfxu.png)