Answer:
a)
![\bar X \sim N (\mu, (\sigma)/(√(n)))](https://img.qammunity.org/2021/formulas/mathematics/college/72mz7utmh99iswskfvaxtt65cizbwcuxjf.png)
With:
![\mu_(\bar X)= 83](https://img.qammunity.org/2021/formulas/mathematics/college/1y7knra2f3k2tbb4rubsxffndr2i50ya25.png)
![\sigma_(\bar X)=(27)/(√(81))= 3](https://img.qammunity.org/2021/formulas/mathematics/college/v0npz72z5c6ibekn6hwqpls2ec9nywjw6g.png)
b)
![z= (89-83)/((27)/(√(81)))= 2](https://img.qammunity.org/2021/formulas/mathematics/college/tn84ktr8dv9b72khxotpl36ap28sy6lwlg.png)
![P(Z>2) = 1-P(Z<2)= 1-0.97725= 0.02275](https://img.qammunity.org/2021/formulas/mathematics/college/kwmin912nwaf5mj59fh50r2ty9sdb19g2x.png)
c)
![z= (75.65-83)/((27)/(√(81)))= -2.45](https://img.qammunity.org/2021/formulas/mathematics/college/g8z71n24szxc0arlspm04b00qvxqwepw1a.png)
![P(Z<-2.45) =0.0071](https://img.qammunity.org/2021/formulas/mathematics/college/vsq0ilnjmngxgagk8c8txslkkmoh2uramy.png)
d)
![z= (89.3-83)/((27)/(√(81)))= 2.1](https://img.qammunity.org/2021/formulas/mathematics/college/wd2y1od3d0nz5kxqzjihb5usjcq5w1dmmf.png)
![z= (79.4-83)/((27)/(√(81)))= -1.2](https://img.qammunity.org/2021/formulas/mathematics/college/ak7nst6wvf1ws5jpdx2vzxb7qfaedufwrl.png)
![P(-1.2<Z<2.1)= P(Z<2.1) -P(z<-1.2) = 0.982-0.115= 0.867](https://img.qammunity.org/2021/formulas/mathematics/college/id3kvxzq1trbbgkhywlbrharcnvo75p5mk.png)
Explanation:
For this case we know the following propoertis for the random variable X
![\mu = 83, \sigma = 27](https://img.qammunity.org/2021/formulas/mathematics/college/vogx5cowv06wzcgzyshbwh765c7f317jg2.png)
We select a sample size of n = 81
Part a
Since the sample size is large enough we can use the central limit distribution and the distribution for the sampel mean on this case would be:
![\bar X \sim N (\mu, (\sigma)/(√(n)))](https://img.qammunity.org/2021/formulas/mathematics/college/72mz7utmh99iswskfvaxtt65cizbwcuxjf.png)
With:
![\mu_(\bar X)= 83](https://img.qammunity.org/2021/formulas/mathematics/college/1y7knra2f3k2tbb4rubsxffndr2i50ya25.png)
![\sigma_(\bar X)=(27)/(√(81))= 3](https://img.qammunity.org/2021/formulas/mathematics/college/v0npz72z5c6ibekn6hwqpls2ec9nywjw6g.png)
Part b
We want this probability:
![P(\bar X>89)](https://img.qammunity.org/2021/formulas/mathematics/college/6qoozztjbv17vls1hk9aoauibtc2iu6zie.png)
We can use the z score formula given by:
![z = (\bar X -\mu)/((\sigma)/(√(n)))](https://img.qammunity.org/2021/formulas/mathematics/college/b574o1myt833s9y49xcr0i6oml1ndwgich.png)
And if we find the z score for 89 we got:
![z= (89-83)/((27)/(√(81)))= 2](https://img.qammunity.org/2021/formulas/mathematics/college/tn84ktr8dv9b72khxotpl36ap28sy6lwlg.png)
![P(Z>2) = 1-P(Z<2)= 1-0.97725= 0.02275](https://img.qammunity.org/2021/formulas/mathematics/college/kwmin912nwaf5mj59fh50r2ty9sdb19g2x.png)
Part c
![P(\bar X<75.65)](https://img.qammunity.org/2021/formulas/mathematics/college/nu355qilyu5a0m7ifwhcrlj7s265ibch9u.png)
We can use the z score formula given by:
![z = (\bar X -\mu)/((\sigma)/(√(n)))](https://img.qammunity.org/2021/formulas/mathematics/college/b574o1myt833s9y49xcr0i6oml1ndwgich.png)
And if we find the z score for 75.65 we got:
![z= (75.65-83)/((27)/(√(81)))= -2.45](https://img.qammunity.org/2021/formulas/mathematics/college/g8z71n24szxc0arlspm04b00qvxqwepw1a.png)
![P(Z<-2.45) =0.0071](https://img.qammunity.org/2021/formulas/mathematics/college/vsq0ilnjmngxgagk8c8txslkkmoh2uramy.png)
Part d
We want this probability:
![P(79.4 < \bar X < 89.3)](https://img.qammunity.org/2021/formulas/mathematics/college/rdxn7wde0qh93dpkriu9qn0rvvg4qyvpsv.png)
We find the z scores:
![z= (89.3-83)/((27)/(√(81)))= 2.1](https://img.qammunity.org/2021/formulas/mathematics/college/wd2y1od3d0nz5kxqzjihb5usjcq5w1dmmf.png)
![z= (79.4-83)/((27)/(√(81)))= -1.2](https://img.qammunity.org/2021/formulas/mathematics/college/ak7nst6wvf1ws5jpdx2vzxb7qfaedufwrl.png)
![P(-1.2<Z<2.1)= P(Z<2.1) -P(z<-1.2) = 0.982-0.115= 0.867](https://img.qammunity.org/2021/formulas/mathematics/college/id3kvxzq1trbbgkhywlbrharcnvo75p5mk.png)