Answer:
a)
![\bar X \sim N (\mu, (\sigma)/(√(n)))](https://img.qammunity.org/2021/formulas/mathematics/college/72mz7utmh99iswskfvaxtt65cizbwcuxjf.png)
With:
![\mu_(\bar X)= 88](https://img.qammunity.org/2021/formulas/mathematics/college/rtx2e4o7imuihbp4ky7ieb8hafwvjphr7v.png)
![\sigma_(\bar X)= 8](https://img.qammunity.org/2021/formulas/mathematics/college/28755cd8uh1m484wacwdll7lg0ut35ozaj.png)
b)
![z=(89.7-88)/((8)/(√(64)))= 1.7](https://img.qammunity.org/2021/formulas/mathematics/college/ny05h6v33zhf68jzkhk5g151lfhbil6ok4.png)
![P(Z>1.7) = 1-P(Z<1.7) =1-0.955=0.0446](https://img.qammunity.org/2021/formulas/mathematics/college/a8gjeh7rtljs6li3vm31rjej3skq4swh1f.png)
c)
![z =(85.7-88)/((8)/(√(64)))= -2.3](https://img.qammunity.org/2021/formulas/mathematics/college/xeaxk30bm0ar3xvrvyqboy0q7zggxatvlx.png)
![P(Z<-2.3) = 0.0107](https://img.qammunity.org/2021/formulas/mathematics/college/riaw5w9qzky9kfsaonkbo47hho74tq3eib.png)
d)
![z =(87.35-88)/((8)/(√(64)))= -0.65](https://img.qammunity.org/2021/formulas/mathematics/college/43tcrw7h2emssmquz42gy2byfprj45jek8.png)
![z =(90.5-88)/((8)/(√(64)))= 2.5](https://img.qammunity.org/2021/formulas/mathematics/college/vc33nii8a5tic8mm04fyx9sexydj9p1s2a.png)
![P(-0.65<z<2.5)=P(Z<2.5)-P(Z<-0.65) =0.994-0.258 = 0.736](https://img.qammunity.org/2021/formulas/mathematics/college/j562usiyspeww1d2y58wjndsl4h9i46b6g.png)
Explanation:
For this case we know the following propoertis for the random variable X
![\mu = 88, \sigma = 8](https://img.qammunity.org/2021/formulas/mathematics/college/8yqlv1px5448izi31sbbq7idfuxa8805fj.png)
We select a sample size of n = 64
Part a
Since the sample size is large enough we can use the central limit distribution and the distribution for the sample mean on this case would be:
![\bar X \sim N (\mu, (\sigma)/(√(n)))](https://img.qammunity.org/2021/formulas/mathematics/college/72mz7utmh99iswskfvaxtt65cizbwcuxjf.png)
With:
![\mu_(\bar X)= 88](https://img.qammunity.org/2021/formulas/mathematics/college/rtx2e4o7imuihbp4ky7ieb8hafwvjphr7v.png)
![\sigma_(\bar X)= 8](https://img.qammunity.org/2021/formulas/mathematics/college/28755cd8uh1m484wacwdll7lg0ut35ozaj.png)
Part b
We want this probability:
![P(\bar X>89.7)](https://img.qammunity.org/2021/formulas/mathematics/college/vxtatp556crqeljs6edzceot672wd15mmm.png)
We can use the z score formula given by:
![z = (\bar X -\mu)/((\sigma)/(√(n)))](https://img.qammunity.org/2021/formulas/mathematics/college/b574o1myt833s9y49xcr0i6oml1ndwgich.png)
And if we find the z score for 89.7 we got:
![z=(89.7-88)/((8)/(√(64)))= 1.7](https://img.qammunity.org/2021/formulas/mathematics/college/ny05h6v33zhf68jzkhk5g151lfhbil6ok4.png)
![P(Z>1.7) = 1-P(Z<1.7) =1-0.955=0.0446](https://img.qammunity.org/2021/formulas/mathematics/college/a8gjeh7rtljs6li3vm31rjej3skq4swh1f.png)
Part c
![P(\bar X<85.7)](https://img.qammunity.org/2021/formulas/mathematics/college/7w5ga5vd0rchvcyx3dtmzvlf24cry5my4l.png)
We can use the z score formula given by:
![z = (\bar X -\mu)/((\sigma)/(√(n)))](https://img.qammunity.org/2021/formulas/mathematics/college/b574o1myt833s9y49xcr0i6oml1ndwgich.png)
And if we find the z score for 85.7 we got:
![z =(85.7-88)/((8)/(√(64)))= -2.3](https://img.qammunity.org/2021/formulas/mathematics/college/xeaxk30bm0ar3xvrvyqboy0q7zggxatvlx.png)
![P(Z<-2.3) = 0.0107](https://img.qammunity.org/2021/formulas/mathematics/college/riaw5w9qzky9kfsaonkbo47hho74tq3eib.png)
Part d
We want this probability:
![P(87.35 <\bar X< 90.5)](https://img.qammunity.org/2021/formulas/mathematics/college/bqo7je5g37l6af0qhn4caq9b5sykk0mkxk.png)
We find the z scores:
![z =(87.35-88)/((8)/(√(64)))= -0.65](https://img.qammunity.org/2021/formulas/mathematics/college/43tcrw7h2emssmquz42gy2byfprj45jek8.png)
![z =(90.5-88)/((8)/(√(64)))= 2.5](https://img.qammunity.org/2021/formulas/mathematics/college/vc33nii8a5tic8mm04fyx9sexydj9p1s2a.png)
![P(-0.65<z<2.5)=P(Z<2.5)-P(Z<-0.65) =0.994-0.258 = 0.736](https://img.qammunity.org/2021/formulas/mathematics/college/j562usiyspeww1d2y58wjndsl4h9i46b6g.png)