Answer:
The 95% confidence interval for the standard deviation of the duration times of game play is (279.76, 670.50).
Explanation:
The data for the twelve different video games showing substance use were observed and the duration of times of game play (in seconds) are listed below:
S = {4049, 3884, 3859, 4027, 4318, 4813, 4657, 4033, 5004, 4823, 4334, 4317}
It is assumed that the sample was obtained from a population with a normal distribution.
The confidence interval for population standard deviation is given by,
![\sqrt{((n-1)s^(2))/(\chi^(2)_(\alpha/2))}<\sigma<\sqrt{((n-1)s^(2))/(\chi^(2)_(1-\alpha/2))}](https://img.qammunity.org/2021/formulas/mathematics/college/nw2s6iklo8qqq3r6di6k2ocmupa59yswqs.png)
Compute the sample variance s² as follows:
![\text{s}^(2) = (1)/(n - 1)\sum\limits_(i=1)^(n)(x_i - \overline{x})^(2)\\](https://img.qammunity.org/2021/formulas/mathematics/college/l1cephrsijcwhqugs4v5zuwr8sejgqy92c.png)
![=(1)/(12-1)* 1715527.67\\\\](https://img.qammunity.org/2021/formulas/mathematics/college/2neg72oi2ifx1zghggauc9fyukz1xx268r.png)
![=155957.061\\](https://img.qammunity.org/2021/formulas/mathematics/college/ryfh9kmyix8udlerty0i6svcbma0sbms7s.png)
Compute the critical values of Ci-square for 95% confidence level and (n - 1) degrees of freedom as follows:
![\chi^(2)_(\alpha/2, (n-1))=\chi^(2)_(0.025, (12-1))=\chi^(2)_(0.025, 11)=21.92\\\chi^(2)_(1-\alpha/2, (n-1))=\chi^(2)_(1-0.025, (12-1))=\chi^(2)_(0.975, 11)=3.816](https://img.qammunity.org/2021/formulas/mathematics/college/qv9obadryj8u0hawf5ol87aaw03b259zw4.png)
*Use a Chi-square table.
Compute the 95% confidence interval for the standard deviation of the duration times of game play as follows:
![\sqrt{((n-1)s^(2))/(\chi^(2)_(\alpha/2))}<\sigma<\sqrt{((n-1)s^(2))/(\chi^(2)_(1-\alpha/2))}](https://img.qammunity.org/2021/formulas/mathematics/college/nw2s6iklo8qqq3r6di6k2ocmupa59yswqs.png)
![=\sqrt{((12-1)155957.061)/(21.92)}<\sigma<\sqrt{((12-1)155957.061)/(3.816)}](https://img.qammunity.org/2021/formulas/mathematics/college/1pn7zq6d6ffhntdhbuvmy4hi5wci7v5agl.png)
![=279.7555<\sigma<670.4937](https://img.qammunity.org/2021/formulas/mathematics/college/119gs85l3e31shtmc8mf7heaoiofz32kaa.png)
![\approx279.76<\sigma<670.50](https://img.qammunity.org/2021/formulas/mathematics/college/f1cfbz5xf0hwqkyzvrfy98ft6go30kodr5.png)
Thus, the 95% confidence interval for the standard deviation of the duration times of game play is (279.76, 670.50).