13.8k views
2 votes
Find the area (in square units) of the region under the graph of the function f on the interval [1, 7].

f(x) = 1/x

User Fabs
by
5.8k points

1 Answer

1 vote

Answer:


\displaystyle \int\limits^7_1 {(1)/(x)} \, dx = \ln 7

General Formulas and Concepts:

Calculus

Integration

  • Integrals

Integration Rule [Fundamental Theorem of Calculus 1]:
\displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Area of a Region Formula:
\displaystyle A = \int\limits^b_a {[f(x) - g(x)]} \, dx

Explanation:

Step 1: Define

Identify


\displaystyle f(x) = (1)/(x) \\\left[ 1 ,\ 7 \right]

Step 2: Integrate

  1. Substitute in variables [Area of a Region Formula]:
    \displaystyle \int\limits^7_1 {(1)/(x)} \, dx
  2. [Integral] Logarithmic Integration:
    \displaystyle \int\limits^7_1 {(1)/(x)} \, dx = \ln \big| x \big| \bigg| \limits^7_1
  3. Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:
    \displaystyle \int\limits^7_1 {(1)/(x)} \, dx = \ln 7 - \ln 1
  4. Simplify:
    \displaystyle \int\limits^7_1 {(1)/(x)} \, dx = \ln 7

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

User Adrian Krebs
by
5.1k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.