Answer:
![\displaystyle \int\limits^7_1 {(1)/(x)} \, dx = \ln 7](https://img.qammunity.org/2021/formulas/mathematics/college/2hziz13xs0bbomdhftlkrofwuyss9ijazb.png)
General Formulas and Concepts:
Calculus
Integration
Integration Rule [Fundamental Theorem of Calculus 1]:
![\displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)](https://img.qammunity.org/2021/formulas/mathematics/college/je9vx4nu9fprre5oszklxfozykmiyr5l2m.png)
Area of a Region Formula:
![\displaystyle A = \int\limits^b_a {[f(x) - g(x)]} \, dx](https://img.qammunity.org/2021/formulas/mathematics/college/8yomppr4m10wil0api6m0lag5b7hnc5c9y.png)
Explanation:
Step 1: Define
Identify
![\displaystyle f(x) = (1)/(x) \\\left[ 1 ,\ 7 \right]](https://img.qammunity.org/2021/formulas/mathematics/college/c1si23gdmtdvhfzugeoghqwcwphtxog2m0.png)
Step 2: Integrate
- Substitute in variables [Area of a Region Formula]:
![\displaystyle \int\limits^7_1 {(1)/(x)} \, dx](https://img.qammunity.org/2021/formulas/mathematics/college/7gfqrsbswgwvr33pse5ns1l7dqknozym5a.png)
- [Integral] Logarithmic Integration:
![\displaystyle \int\limits^7_1 {(1)/(x)} \, dx = \ln \big| x \big| \bigg| \limits^7_1](https://img.qammunity.org/2021/formulas/mathematics/college/wak7v6nc5u4veklm6p9knsv3u9nxd9og4l.png)
- Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:
![\displaystyle \int\limits^7_1 {(1)/(x)} \, dx = \ln 7 - \ln 1](https://img.qammunity.org/2021/formulas/mathematics/college/onutyst8xsl8el196dh96t2i5iiruuuwld.png)
- Simplify:
![\displaystyle \int\limits^7_1 {(1)/(x)} \, dx = \ln 7](https://img.qammunity.org/2021/formulas/mathematics/college/2hziz13xs0bbomdhftlkrofwuyss9ijazb.png)
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Integration